Our TORCS driving controller presented at EvoGAMES 2017

Last week, @jjmerelo presented at EvoGAMES 2017 (inside Evo* 2017) our work titled “Driving in TORCS using modular fuzzy controllers”.

This paper presents a novel car racing controller for TORCS (The Open Racing Car Simulator), which is based in the combination of two fuzzy subcontrollers, one for setting the speed, and one to control the steer angle. The obtained results are quite promissing, as the controller is quite competitive even against very tough TORCS teams.

The abstract of the paper is:

When driving a car it is essential to take into account all possible factors; even more so when, like in the TORCS simulated race game, the objective is not only to avoid collisions, but also to win the race within a limited budget. In this paper, we present the design of an autonomous driver for racing car in a simulated race. Unlike previous controllers, that only used fuzzy logic approaches for either acceleration or steering, the proposed driver uses simultaneously two fuzzy controllers for steering and computing the target speed of the car at every moment of the race. They use the track border sensors as inputs and besides, for enhanced safety, it has also taken into account the relative position of the other competitors. The proposed fuzzy driver is evaluated in practise and timed races giving good results across a wide variety of racing tracks, mainly those that have many turning points.

There was an interactive presentation at the conference, together with a poster:

The paper is available online from: https://link.springer.com/chapter/10.1007/978-3-319-55849-3_24

Enjoy (and cite) it! :D

 

Entropy is the best predictor of volunteer computing system performance

In volunteer computing systems the users get to decide when, and how much, their own computers are going to be working in a particular problem. We have been working for some time in using volunteer computing for evolutionary algorithms, and all our efforts have focused in having a scalable back end and also finding how the user behaves in order to understand the behavior. A priori, one would think that the more users, the better. However, the fact that these systems are asynchronous and have heterogeneous capabilities means that it might happen that new users do not really have any contribution to the overall effort.
In this paper presented at the EvoStar conference this week, we took a different approach to analyzing performance by using compression entropy, computed over the number of contributions per minute. The bigger compression, the more uniform contributions are; the lower the compression, that means that the contributions change all the time. After some preliminary reports published in FigShare we found that there is a clear trend in an increasing entropy making the algorithm end much faster. This contradicts our initial guess, and also opens new avenues for the design of volunteer evolutionary computing systems, and probably other systems whose performande depends on diversity such as evolutionary algorithms.
Check out the poster and also the presentation done at the conference. You will miss, however, the tulip origami we gave out to the visitors of the poster.
In our research group we support open science, that is why you can find everything, from data to processing scripts to the sources of this paper, in the GitHub repository