Our TORCS driving controller presented at EvoGAMES 2017

Last week, @jjmerelo presented at EvoGAMES 2017 (inside Evo* 2017) our work titled “Driving in TORCS using modular fuzzy controllers”.

This paper presents a novel car racing controller for TORCS (The Open Racing Car Simulator), which is based in the combination of two fuzzy subcontrollers, one for setting the speed, and one to control the steer angle. The obtained results are quite promissing, as the controller is quite competitive even against very tough TORCS teams.

The abstract of the paper is:

When driving a car it is essential to take into account all possible factors; even more so when, like in the TORCS simulated race game, the objective is not only to avoid collisions, but also to win the race within a limited budget. In this paper, we present the design of an autonomous driver for racing car in a simulated race. Unlike previous controllers, that only used fuzzy logic approaches for either acceleration or steering, the proposed driver uses simultaneously two fuzzy controllers for steering and computing the target speed of the car at every moment of the race. They use the track border sensors as inputs and besides, for enhanced safety, it has also taken into account the relative position of the other competitors. The proposed fuzzy driver is evaluated in practise and timed races giving good results across a wide variety of racing tracks, mainly those that have many turning points.

There was an interactive presentation at the conference, together with a poster:

The paper is available online from: https://link.springer.com/chapter/10.1007/978-3-319-55849-3_24

Enjoy (and cite) it! :D


[Paper] My life as a sim: evolving unique and engaging life stories using virtual worlds

Our latest publication My life as a sim: evolving unique and engaging life stories using virtual worlds, using our framework MADE (created by @rubenhek), has been published in the ALIFE 2014 conference. The abstract:

Stories are not only painfully weaved by crafty writers in the solitude of their studios; they also have to be produced massively for non-player characters in the video game industry or tailored to particular tastes in personalized stories. However, the creation of fictional stories is a very complex task that usually implies a creative process where the author has to combine characters, conflicts and backstories to create an engaging narrative. This work describes a general methodology to generate cohesive and coherent backstories where desired archetypes (universally accepted literary symbols) can emerge in complex stochastic systems. This methodology supports the modeling and parametrization of the agents, the environment where they will live and the desired literary setting. The use of a Genetic Algorithm (GA) is proposed to establish the parameter configuration that will lead to backstories that best fit the setting. Information extracted from a simulation can then be used to create the literary work. To demonstrate the adequacy of the methodology, we perform an implementation using a specific multi-agent system and evaluate the results, testing with three different literary settings.

Check out the presentation by @jjmerelo at http://jj.github.io/alife14-made/#/home. You can download the proceedings of the conference (CC license), or download the paper draft.

More information is available on the project page.