On Volunteer-Computing and Self-driving car fuzzy controllers in the sunny Cádiz

Every two years, the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU) brings together the most important researchers in the area of uncertainty and fuzzy systems. As I am working in Cadiz, it was a great opportunity to present some of the latest work that the Geneura group has recently developed.

The first of these has been developed together with the Technical Institute of Tijuana and describes the social behaviour of users of a voluntary computer system. It is very interesting to discover how the use of a leaderboard makes users spend more time collaborating. Take  a look to the presentation:

Mario García Valdez, Juan Julián Merelo Guervós, Lucero Lara, Pablo García-Sánchez:
Increasing Performance via Gamification in a Volunteer-Based Evolutionary Computation System. IPMU (3) 2018: 342-353

Here is the abstract:

Distributed computing systems can be created using volunteers, users who spontaneously, after receiving an invitation, decide to provide their own resources or storage to contribute to a common effort. They can, for instance, run a script embedded in a web page; thus, collaboration is straightforward, but also ephemeral, with resources depending on the amount of time the user decides to lend. This implies that the user has to be kept engaged so as to obtain as many computing cycles as possible. In this paper, we analyze a volunteer-based evolutionary computing system called NodIO with the objective of discovering design decisions that encourage volunteer participation, thus increasing the overall computing power. We present the results of an experiment in which a gamification technique is applied by adding a leader-board showing the top scores achieved by registered contributors. In NodIO, volunteers can participate without creating an account, so one of the questions we wanted to address was if the need to register would have a negative impact on user participation. The experiment results show that even if only a small percentage of users created an account, those participating in the competition provided around 90% of the work, thus effectively increasing the performance of the overall system.

 

The second work uses an evolutionary algorithm to optimize the parameters of a fuzzy controller that drives a car in the TORCS video game and continues our previous work. We have been collaborating with Mohammed Salem of University of Mascara along this line for a while.

Mohammed Salem, Antonio Miguel Mora, Juan Julián Merelo Guervós, Pablo García-Sánchez: Applying Genetic Algorithms for the Improvement of an Autonomous Fuzzy Driver for Simulated Car Racing. IPMU (3) 2018: 236-247

Games offer a suitable testbed where new methodologies and algorithms can be tested in a near-real life environment. For example, in a car driving game, using transfer learning or other techniques results can be generalized to autonomous driving environments. In this work, we use evolutionary algorithms to optimize a fuzzy autonomous driver for the open simulated car racing game TORCS. The Genetic Algorithm applied improves the fuzzy systems to set an optimal target speed as well as the instantaneous steering angle during the race. Thus, the approach offer an automatic way to define the membership functions, instead of a manual or hill-climbing descent method. However, the main issue with this kind of algorithms is to define a proper fitness function that best delivers the obtained result, which is eventually to win as many races as possible. In this paper we define two different evaluation functions, and prove that fine-tuning the controller via evolutionary algorithms robustly finds good results and that, in many cases, they are able to play very competitively against other published results, with a more relying approach that needs very few parameters to tune. The optimized fuzzy-controllers (one per fitness) yield a very good performance, mainly in tracks that have many turning points, which are, in turn, the most difficult for any autonomous agent. Experimental results show that the enhanced controllers are very competitive with respect to the embedded TORCS drivers, and much more efficient in driving than the original fuzzy-controller.

 

Advertisements

Our TORCS driving controller presented at EvoGAMES 2017

Last week, @jjmerelo presented at EvoGAMES 2017 (inside Evo* 2017) our work titled “Driving in TORCS using modular fuzzy controllers”.

This paper presents a novel car racing controller for TORCS (The Open Racing Car Simulator), which is based in the combination of two fuzzy subcontrollers, one for setting the speed, and one to control the steer angle. The obtained results are quite promissing, as the controller is quite competitive even against very tough TORCS teams.

The abstract of the paper is:

When driving a car it is essential to take into account all possible factors; even more so when, like in the TORCS simulated race game, the objective is not only to avoid collisions, but also to win the race within a limited budget. In this paper, we present the design of an autonomous driver for racing car in a simulated race. Unlike previous controllers, that only used fuzzy logic approaches for either acceleration or steering, the proposed driver uses simultaneously two fuzzy controllers for steering and computing the target speed of the car at every moment of the race. They use the track border sensors as inputs and besides, for enhanced safety, it has also taken into account the relative position of the other competitors. The proposed fuzzy driver is evaluated in practise and timed races giving good results across a wide variety of racing tracks, mainly those that have many turning points.

There was an interactive presentation at the conference, together with a poster:

The paper is available online from: https://link.springer.com/chapter/10.1007/978-3-319-55849-3_24

Enjoy (and cite) it! :D