A better TORCS driving controller presented in EvoStar 2018

Amazing bench
Last year, we presented along with Mohammed Salem, from the university of Mascara, in Algeria, our TORCS driving controller. This controller effectively drives a simulated vehicle, considering input from its sensors, and deciding on a target speed and how to turn the steering wheel.
Poster session, with our poster in the first position
This year, in Evostar 2018 in Parma, we had again our paper accepted for the poster session, which took place in the incredible corridor to the right of these words. The poster included interactive elements, such as a small car used for demonstration on how the driver worked.

And it works really well, or at least better than the previous versions. The key element was the design of a new fitness function that includes damages, and also terms related to speed. Still some way to go; in the near future we will be posting our new results in this area.

The book of proceedings can be downloaded from Springer. Our paper is in page 342 and you can also download just the paper from here, but we do open science, so you can follow our writing process and download the paper from this GitHub repository too

 

 

Advertisements

Our TORCS driving controller presented at EvoGAMES 2017

Last week, @jjmerelo presented at EvoGAMES 2017 (inside Evo* 2017) our work titled “Driving in TORCS using modular fuzzy controllers”.

This paper presents a novel car racing controller for TORCS (The Open Racing Car Simulator), which is based in the combination of two fuzzy subcontrollers, one for setting the speed, and one to control the steer angle. The obtained results are quite promissing, as the controller is quite competitive even against very tough TORCS teams.

The abstract of the paper is:

When driving a car it is essential to take into account all possible factors; even more so when, like in the TORCS simulated race game, the objective is not only to avoid collisions, but also to win the race within a limited budget. In this paper, we present the design of an autonomous driver for racing car in a simulated race. Unlike previous controllers, that only used fuzzy logic approaches for either acceleration or steering, the proposed driver uses simultaneously two fuzzy controllers for steering and computing the target speed of the car at every moment of the race. They use the track border sensors as inputs and besides, for enhanced safety, it has also taken into account the relative position of the other competitors. The proposed fuzzy driver is evaluated in practise and timed races giving good results across a wide variety of racing tracks, mainly those that have many turning points.

There was an interactive presentation at the conference, together with a poster:

The paper is available online from: https://link.springer.com/chapter/10.1007/978-3-319-55849-3_24

Enjoy (and cite) it! :D