A new lap in the race to improve our evolutionary fuzzy-controllers for TORCS

Last week we presented at the IEEE Conference on Game 2019, held in London (UK), our new paper titled “Beating uncertainty in racing bot evolution through enhanced exploration and pole position selection“.

The abstract of the work is:

One of the main problems in the design through optimization of car racing bots is the inherent noise in the optimization process: besides the fact that the fitness is a heuristic
based on what we think are the keys to success and as such just a surrogate for the ultimate objective, winning races, fitness itself is uncertain due to the stochastic behavior of racing conditions and the rest of the (simulated) racers. The fuzzy-based genetic controller for the car racing simulator TORCS that we have defined in previous works is based on two fuzzy subcontrollers, one for deciding on the wheel steering angle and another to set the car target speed at the next simulation tick.
They are both optimized by means of an Evolutionary Algorithm, which considers an already tested fitness function focused on the maximization of the average speed during the race and the minimization of the car damage. The noisy environment asks for keeping diversity high during evolution, that is why we have added a Blend Crossover (BLX-alpha) operator, which is, besides, able to exploit current results at the same time it explores. Additionally, we try to address uncertainty in selection by introducing a novel selection policy of parents based in races, where the individuals are grouped and compete against others in several races, so just the firsts ranked will remain in the population as parents. Several experiments have been conducted, testing the value of the different controllers. The results show that the combination of a dynamic BLX-alpha crossover operator plus the pole position selection policy clearly beats the rest of approaches. Moreover, in the comparison of this controller with one of the participants of the prestigious international Simulated Car Racing Championship, our autonomous driver obtains much better results than the opponent.

The presentation can be seen below:

As usual, enjoy it and…cite us! :D

Anuncios

Making birds less angry by evolving pig supporting structures in the game

After our poster in EvoStar, GECCO 2019 saw another poster on evolution of Angry Birds structures, in this ocassion focused on the inclusion of the Box2D Physics simulation engine into the evolutionary algorithm to save using Science Birds, which improved evaluation of the structures that needed it by 100x.
The poster is minimalistic, with the intention of making it awesome.
Angry Birds poster is ready to go.//embedr.flickr.com/assets/client-code.js
Get data, code and the paper itself from our repository.

Charla sobre Inteligencia Computacional en Videojuegos

El próximo día 1 de julio yo mismo (@amorag) daré una charla titulada “Inteligencia Computacional en Juegos“.  :D

En la charla hablaré sobre todo tipos de juegos y puzles y las técnicas de inteligencia artificial que se suelen usar para crear o imitar comportamientos inteligentes o parecidos a los de los humanos, tanto a nivel de juegos comerciales, como en el entorno académico e investigador.

El evento ha sido anunciado en Meetup, dentro del grupo Granada Artificial Intelligence Meetup.

El lugar y horario:

 

Quedan pocas plazas ya…¡corre insensat@ y apúntate en Meetup!  :-p

Angry Birds meet EAs at EVO* 2019

Last 24 of April we presented the work “Free Form Evolution for Angry Birds Level Generation” at EVOApplications 2019 (EvoGAMES) a conference part of EVO* 2019, held in Leipzig (Germany).

The abstract of the work is:

This paper presents an original approach for building structures that are stable under gravity for the physics-based puzzle game Angry Birds, with the ultimate objective of creating fun and aesthetically pleasing Angry Birds levels with the minimum number of constraints. This approach consists of a search-based procedural level generation method that uses evolutionary algorithms. In order to evaluate the stability of the levels, they are executed in an adaptation of an open source version of the game called Science Birds. In the same way, an open source evolutionary computation framework has been implemented to fit the requirements of the problem. The main challenge has been to design a fitness function that, first, avoids if possible the actual execution of the simulator, which is time consuming, and, then, to take into account the different ways in which a structure is not structurally sound and consider them in different ways to provide a smooth landscape that eventually achieves that soundness. Different representations and operators have been considered and studied. In order to test the method four experiments have been carried out, obtaining a variety of stable structures, which is the first path for the generation of levels that are aesthetically pleasing as well as playable.

@amorag did a short presentation and later ‘defended’ a poster during the reception act. The presentation is a description of the poster:

Actually the poster was selected as the second best of the conference by the attendants. :D

Those interested can found the paper at Springer web: https://link.springer.com/chapter/10.1007/978-3-030-16692-2_9

Enjoy it… and cite us! ;D

Algoritmos evolutivos aplicados a HearthStone en las noticias

Este fin de semana algunas webs se han hecho eco de una noticia originada por la Agencia SINC.

En concreto la noticia se ha titulado La inteligencia artificial imita la evolución biológica para ganar en los videojuegos y resumida como:

Informáticos españoles han aplicado técnicas avanzadas de inteligencia artificial para generar automáticamente los mejores mazos de cartas en Hearthstone, un videojuego en línea con más de 30 millones de jugadores en todo el mundo. Los algoritmos se inspiran en el proceso biológico de la selección natural.

Entre las webs que la han recogido, destacan, por ejemplo la de La Sexta.

Dichas noticias se refieren a nuestro trabajo publicado hace algunos meses en la revista Knowledge-Based Systems y comentado en esta entrada del blog.

 

 

Creating Hearthstone decks by using Genetic Algorithms

I’m glad you’re here, friend! There’s a chill outside, so pull up a chair by the hearth of our inn and prepare to learn how the Ancient Gods use the power of the secret and ancient branch of the Evolution to generate Hearthstone decks by means of the magic and mistery!!

The_Innkeeper's_Tale_-_The_Innkeeper's_Tale2.jpg

Several months ago, my colleague Alberto Tonda and I were discussing about our latest adventures playing the Digital Collectible Card Game Hearthstone, when one of us said “Uhm, Genetic Algorithms usually work well with combinatorial problems, and solutions are usually a vector of elements. Elements such as cards. Such as cards of Hearthstone, the game we are playing right now while we are talking. Are you thinking what I’m thinking?”

Five minutes later we found an open-source Hearthstone simulator and started to think how to address the possibility of automatically evolve decks of Hearthstone.

The idea is quite simple: Hearthstone is played using a deck of 30 cards (from a pool of thousands available), so it is easy to model the candidate solution. With the simulator, we can perform several matches using different enemy decks, and obtain the number of victories. Therefore, we have a number that can be used to model the performance (fitness) of the deck.

Soooo, it’s easy to see one and one makes two, two and one makes three, and it was destiny, that we created a genetic algorithm that generates deck for Hearthstone for free.

Our preliminary results where discussed here, but we wanted to continue testing our method, so we tested using all available classes of the game, with the help of JJ, Giovanny and Antonio. All the best human-made decks were outperformed by our approach! And not only that, we applied a new operator called Smart Mutation that it is based in what we do when we test new decks in Hearthstone: we remove a card, and place another instead, but with +/-1 mana crystals, and not one completely random from the pool. The results were even better. Neat!

Maybe you prefer to read the abstract, that it is written in a more formal way than this post. You know, using the language of the science.

Collectible card games have been among the most popular and profitable products of the entertainment industry since the early days of Magic: The Gathering in the nineties. Digital versions have also appeared, with HearthStone: Heroes of WarCraft being one of the most popular. In Hearthstone, every player can play as a hero, from a set of nine, and build his/her deck before the game from a big pool of available cards, including both neutral and hero-specific cards.
This kind of games offers several challenges for researchers in artificial intelligence since they involve hidden information, unpredictable behaviour, and a large and rugged search space. Besides, an important part of player engagement in such games is a periodical input of new cards in the system, which mainly opens the door to new strategies for the players. Playtesting is the method used to check the new card sets for possible design flaws, and it is usually performed manually or via exhaustive search; in the case of Hearthstone, such test plays must take into account the chosen hero, with its specific kind of cards.
In this paper, we present a novel idea to improve and accelerate the playtesting process, systematically exploring the space of possible decks using an Evolutionary Algorithm (EA). This EA creates HearthStone decks which are then played by an AI versus established human-designed decks. Since the space of possible combinations that are play-tested is huge, search through the space of possible decks has been shortened via a new heuristic mutation operator, which is based on the behaviour of human players modifying their decks.
Results show the viability of our method for exploring the space of possible decks and automating the play-testing phase of game design. The resulting decks, that have been examined for balancedness by an expert player, outperform human-made ones when played by the AI; the introduction of the new heuristic operator helps to improve the obtained solutions, and basing the study on the whole set of heroes shows its validity through the whole range of decks.

You can download the complete paper from the Knowledge-based Systems Journal https://www.sciencedirect.com/science/article/pii/S0950705118301953

See you in future adventures!!!

A better TORCS driving controller presented in EvoStar 2018

Amazing bench
Last year, we presented along with Mohammed Salem, from the university of Mascara, in Algeria, our TORCS driving controller. This controller effectively drives a simulated vehicle, considering input from its sensors, and deciding on a target speed and how to turn the steering wheel.
Poster session, with our poster in the first position
This year, in Evostar 2018 in Parma, we had again our paper accepted for the poster session, which took place in the incredible corridor to the right of these words. The poster included interactive elements, such as a small car used for demonstration on how the driver worked.

And it works really well, or at least better than the previous versions. The key element was the design of a new fitness function that includes damages, and also terms related to speed. Still some way to go; in the near future we will be posting our new results in this area.

The book of proceedings can be downloaded from Springer. Our paper is in page 342 and you can also download just the paper from here, but we do open science, so you can follow our writing process and download the paper from this GitHub repository too