A new lap in the race to improve our evolutionary fuzzy-controllers for TORCS

Last week we presented at the IEEE Conference on Game 2019, held in London (UK), our new paper titled “Beating uncertainty in racing bot evolution through enhanced exploration and pole position selection“.

The abstract of the work is:

One of the main problems in the design through optimization of car racing bots is the inherent noise in the optimization process: besides the fact that the fitness is a heuristic
based on what we think are the keys to success and as such just a surrogate for the ultimate objective, winning races, fitness itself is uncertain due to the stochastic behavior of racing conditions and the rest of the (simulated) racers. The fuzzy-based genetic controller for the car racing simulator TORCS that we have defined in previous works is based on two fuzzy subcontrollers, one for deciding on the wheel steering angle and another to set the car target speed at the next simulation tick.
They are both optimized by means of an Evolutionary Algorithm, which considers an already tested fitness function focused on the maximization of the average speed during the race and the minimization of the car damage. The noisy environment asks for keeping diversity high during evolution, that is why we have added a Blend Crossover (BLX-alpha) operator, which is, besides, able to exploit current results at the same time it explores. Additionally, we try to address uncertainty in selection by introducing a novel selection policy of parents based in races, where the individuals are grouped and compete against others in several races, so just the firsts ranked will remain in the population as parents. Several experiments have been conducted, testing the value of the different controllers. The results show that the combination of a dynamic BLX-alpha crossover operator plus the pole position selection policy clearly beats the rest of approaches. Moreover, in the comparison of this controller with one of the participants of the prestigious international Simulated Car Racing Championship, our autonomous driver obtains much better results than the opponent.

The presentation can be seen below:

As usual, enjoy it and…cite us! :D

Anuncios

Our TORCS driving controller presented at EvoGAMES 2017

Last week, @jjmerelo presented at EvoGAMES 2017 (inside Evo* 2017) our work titled “Driving in TORCS using modular fuzzy controllers”.

This paper presents a novel car racing controller for TORCS (The Open Racing Car Simulator), which is based in the combination of two fuzzy subcontrollers, one for setting the speed, and one to control the steer angle. The obtained results are quite promissing, as the controller is quite competitive even against very tough TORCS teams.

The abstract of the paper is:

When driving a car it is essential to take into account all possible factors; even more so when, like in the TORCS simulated race game, the objective is not only to avoid collisions, but also to win the race within a limited budget. In this paper, we present the design of an autonomous driver for racing car in a simulated race. Unlike previous controllers, that only used fuzzy logic approaches for either acceleration or steering, the proposed driver uses simultaneously two fuzzy controllers for steering and computing the target speed of the car at every moment of the race. They use the track border sensors as inputs and besides, for enhanced safety, it has also taken into account the relative position of the other competitors. The proposed fuzzy driver is evaluated in practise and timed races giving good results across a wide variety of racing tracks, mainly those that have many turning points.

There was an interactive presentation at the conference, together with a poster:

The paper is available online from: https://link.springer.com/chapter/10.1007/978-3-319-55849-3_24

Enjoy (and cite) it! :D