Pareto-based Island Model presented at GECCO 2013

Yesterday I presented my work Migration Study on a Pareto-based Island Model for MOACOs, accepted as full-paper at the Genetic and Evolutionary Computation Conference 2013, held in Amsterdam.

The paper abstract is:

Pareto-based island model is a multi-colony distribution scheme recently presented for the resolution, by means of ant colony optimization algorithms, of bi-criteria problems. It yielded very promising results, but the model was implemented considering a unique Pareto-front-shaped unidirectional neighborhood migration topology, and a constant migration rate.
In the present work two additional neighborhood topology schemes, and four different migration rates have been tested, considering the algorithm which obtained the best results in average in the model presentation article: MOACS (Multi-Objective Ant Colony System).
Several experiments have been conducted, including statistical tests for better support the study.
High values for the migration rate and the use of a bidirectional neighborhood migration topology yields the best results.

It is the next step in the research previously published in Soft Computing Journal and commented here.

The presentation is this:

Enjoy it! :D

Advertisements

Parallel Ants at IWANN 2011

Some days ago we presented at the IWANN Conference our new work devoted to study the parallelization of Multi-Objective Ant Colony Optimization algorithms (MOACOs) following different schemes.

It was a very funny presentation (and very interesting, of course :D), because the slides included some CC memes. ;)

These are the slides:

The whole paper can be found here.

Enjoy them! ;)

Military Ants at NICSO 2010

Hi to all!
(the milliards of readers :D).

The last Wednesday (13 of May), we presented (again) our Multiobjective Ant Colony Optimization algorithm (yes, the famous CHAC :D) at NICSO 2010, which was held in Granada, in the same building where we work everyday…
… what a so far trip… :-| :D

The paper presents a study of the objective balancing parameter (named LAMBDA), used in this algorithm. ;)

Here you are the presentation:

Enjoy it! ;)