Dynamic and Partially Connected Ring Topologies for Evolutionary Algorithms with Structured Populations

by Carlos Fernandes, Juan Laredo, Juan Merelo, Carlos Cotta, Agostinho Rosa
in EvoPAR

This paper investigates dynamic and partially connected ring topologies for cellular Evolutionary
Algorithms (cEA). We hypothesize that these structures maintain population diversity at a higher level and reduce the risk of premature convergence to local optima on deceptive and NP-hard fitness landscapes. A general framework for modelling partially connected topologies is proposed and three different schemes are tested. The results show that the structures improve the rate of convergence to global optima when compared to cEAs with standard topologies (ring, rectangular and square) on quasi-deceptive, deceptive and NP-hard problems. Optimal population size tests demonstrate that the proposed topologies require smaller populations when compared to traditional cEAs.

One thought on “Dynamic and Partially Connected Ring Topologies for Evolutionary Algorithms with Structured Populations

  1. Pingback: Evolutionary Algorithms with Dynamic Partically Connected Ring Topology in Evostar | ANYSELF

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s