Ms. PacMan in IEEE Transactions on CI and AI in Games

Our fans and followers must be happy! ;D

They can now access the excellent work by Federico Liberatore in IEEE ToCIAIG journal.

This is the best journal concerning Artificial Intelligence in games, with a very strict reviewing process, so, we are very proud of this success. ;)

This is the next step in the research started one year and a half ago designing competitive  Ghost Teams for catching Ms. PacMan.

The abstract is:

In the last year, thanks to the Ms. Pac-Man vs Ghosts competition, the game of Ms. Pac-Man has gained increasing attention from academics in the field of Computational Intelligence. In this work, we contribute to this research stream by presenting a simple Genetic Algorithm with Lexicographic Ranking (GALR) for the optimization of Flocking Strategy-based ghost controllers. Flocking Strategies are a paradigm for intelligent agents characterized by showing emergent behavior and for having very little computational and memory requirements, making them well suited for commercial applications and mobile devices. In particular, we study empirically the effect of optimizing homogeneous and heterogeneous teams. The computational analysis shows that the Flocking Strategy-based controllers generated by the proposed GALR outperform the ghost controllers included in the competition framework and some of those presented in the literature.

The paper can be found here: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7093170&tag=1

Enjoy it!

(And cite us) :D

Advertisements

From Emergence to Emergency (exit)

Despite the hotel’s firealarm, which forced us all to leave the room, out to the “pleasant” New Orleans’ weather, when I was on slide 12, I eventually finished the presentation of this paper in the 2011 Congress on Evolutionary Computation:

Fernandes, Isidoro, Barata, Merelo, Rosa, From Pherographia to Color Pherographia – Color Sketching with Artificial Ants

Abstract—Ant algorithms are known to return effective results in those problems that may be reduced to finding paths through a graph. However, this class of bio-inspired heuristics have raised the interest of the artistic community as well, namely of the artists that work on the blurred border between art and science. This paper describes an extension of an ant algorithm that, although has been designed as an edge detection tool and a model for collective perception, has also been used for creating artworks that were exhibited to a heterogeneous audience. The algorithm is a self-organized and stigmergic social insects’ model that is able to evolve lines along the contours of an image, in a decentralized and local manner. The result is the emergence of global patterns called pheromone maps. These maps – which were later named with the term pherographia – are grayscale sketches of the original black-and-white image on top of which the model evolves. This work goes beyond grayscale images and addresses colored pherographia, by proposing several image transformation and border selection methods based on behavioral variations of the basic algorithm.