Aplicación de Programación Genética para la generación de bots del RTS Planet Wars en CoSECiVi 2014

Este trabajo se publicó dentro del Primer Congreso de la Sociedad Española para las Ciencias del Videojuego (CoSECIVI), que se celebró en conjunción con el Gamelab 2014 en Barcelona.

En él se presentó el artículo titulado “Designing Competitive Bots for a Real Time Strategy Game using Genetic Programming”, cuyo resumen (en inglés) es:

The design of the Artificial Intelligence (AI) engine for an autonomous agent (bot) in a game is always a difficult task mainly done by an expert human player, who has to transform his/her knowledge into a behavioural engine. This paper presents an approach for conducting this task by means of Genetic Programming (GP) application. This algorithm is applied to design decision trees to be used as bot’s AI in 1 vs 1 battles inside the RTS game Planet Wars. Using this method it is possible to create rule-based systems defining decisions and actions, in an automatic way, completely different from a human designer doing them from scratch. These rules will be optimised along the algorithm run, considering the bot’s performance during evaluation matches. As GP can generate and evolve behavioural rules not taken into account by an expert, the obtained bots could perform better than human-defined ones. Due to the difficulties when applying Computational Intelligence techniques in the videogames scope, such as noise factor in the evaluation functions, three different fitness approaches have been implemented and tested in this work. Two of them try to minimize this factor by considering additional dynamic information about the evaluation matches, rather than just the final result (the winner), as the other function does.
In order to prove them, the best obtained agents have been compared with a previous bot, created by an expert player (from scratch) and then
optimised by means of Genetic Algorithms. The experiments show that the three used fitness functions generate bots that outperform the optimized human-defined one, being the area-based fitness function the one that produces better results.

La presentación del artículo se puede ver aquí:

El artículo se puede encontrar en: http://gaia.fdi.ucm.es/sites/cosecivi14/es/papers/24.pdf

Esperamos que os guste.

Y que nos citéis. :D

Advertisements

Optimización evolutiva de bots para el juego Planet Wars

Aquí está la presentación del trabajo que da título al post. Es una versión actualizada del trabajo que se presentó en el IWANN 2011, así que os refiero primero a esa versión por si no estáis al tanto.
For information about an early version of this work (in English) please check here.