Ms. PacMan in IEEE Transactions on CI and AI in Games

Our fans and followers must be happy! ;D

They can now access the excellent work by Federico Liberatore in IEEE ToCIAIG journal.

This is the best journal concerning Artificial Intelligence in games, with a very strict reviewing process, so, we are very proud of this success. ;)

This is the next step in the research started one year and a half ago designing competitive  Ghost Teams for catching Ms. PacMan.

The abstract is:

In the last year, thanks to the Ms. Pac-Man vs Ghosts competition, the game of Ms. Pac-Man has gained increasing attention from academics in the field of Computational Intelligence. In this work, we contribute to this research stream by presenting a simple Genetic Algorithm with Lexicographic Ranking (GALR) for the optimization of Flocking Strategy-based ghost controllers. Flocking Strategies are a paradigm for intelligent agents characterized by showing emergent behavior and for having very little computational and memory requirements, making them well suited for commercial applications and mobile devices. In particular, we study empirically the effect of optimizing homogeneous and heterogeneous teams. The computational analysis shows that the Flocking Strategy-based controllers generated by the proposed GALR outperform the ghost controllers included in the competition framework and some of those presented in the literature.

The paper can be found here:

Enjoy it!

(And cite us) :D


Aplicación de Programación Genética para la generación de bots del RTS Planet Wars en CoSECiVi 2014

Este trabajo se publicó dentro del Primer Congreso de la Sociedad Española para las Ciencias del Videojuego (CoSECIVI), que se celebró en conjunción con el Gamelab 2014 en Barcelona.

En él se presentó el artículo titulado “Designing Competitive Bots for a Real Time Strategy Game using Genetic Programming”, cuyo resumen (en inglés) es:

The design of the Artificial Intelligence (AI) engine for an autonomous agent (bot) in a game is always a difficult task mainly done by an expert human player, who has to transform his/her knowledge into a behavioural engine. This paper presents an approach for conducting this task by means of Genetic Programming (GP) application. This algorithm is applied to design decision trees to be used as bot’s AI in 1 vs 1 battles inside the RTS game Planet Wars. Using this method it is possible to create rule-based systems defining decisions and actions, in an automatic way, completely different from a human designer doing them from scratch. These rules will be optimised along the algorithm run, considering the bot’s performance during evaluation matches. As GP can generate and evolve behavioural rules not taken into account by an expert, the obtained bots could perform better than human-defined ones. Due to the difficulties when applying Computational Intelligence techniques in the videogames scope, such as noise factor in the evaluation functions, three different fitness approaches have been implemented and tested in this work. Two of them try to minimize this factor by considering additional dynamic information about the evaluation matches, rather than just the final result (the winner), as the other function does.
In order to prove them, the best obtained agents have been compared with a previous bot, created by an expert player (from scratch) and then
optimised by means of Genetic Algorithms. The experiments show that the three used fitness functions generate bots that outperform the optimized human-defined one, being the area-based fitness function the one that produces better results.

La presentación del artículo se puede ver aquí:

El artículo se puede encontrar en:

Esperamos que os guste.

Y que nos citéis. :D

Unreal Expert Bots at IWANN 2013

Last week there was held IWANN 2013 at Tenerife, an international conference mainly devoted to researches inside the neural networks scope. In it, Antonio Fernández Leiva, Raúl Lara and Me organized the Special Session on Artificial Intelligence and Games.

There were five works in the session, one of them “Designing and Evolving an Unreal Tournament— 2004 Expert Bot“.

It describes the designing and improvement, through off-line (not during the game) evolution, of an autonomous agent (or bot) for playing the game Unreal Tournament 2004. This was created by means of a finite state machine which models the expert behaviour of a human player in 1 vs 1 deathmatch mode, following the rules of the international competition.

Then, the bot was improved by means of a Genetic Algorithm, yielding an agent that is, in turn a very hard opponent for the medium-level human player and which can (easily) beat the default bots in the game, even in the maximum difficulty level.

The presentation can be seen at:

Moreover, you can watch one example of the evolution in the following video:

Finally, the Unreal Expert and Genetic bot’s source code are available at

Enjoy them. ;)

Super Mario autonomous agents at LION 2013

Recently, inside the last LION 7 (2013) conference (Special Session on Games and Computational Intelligence) there was presented the paper entitled “FSM-Based Agents for Playing Super Mario Game”.

It describes the implementation and test of an autonomous agent which can play Super Mario game better than an expert user can do (in some trained levels).
It is build starting from a Finite State Machine and applying an Evolutionary Algorithm.

The presentation is:

You can watch one example of the obtained agent playing a game here:

Enjoy it. ;)