Sistemas Clasificadores

Los sistemas clasificadores son una fusión entre los algoritmos evolutivos, el aprendizaje por refuerzo y el supervisado. Se conocen como Learning Classifier Systems. El viernes pasado aproveché la reunión del grupo para presentar una breve revisión histórica y dar detalles sobre quizá el algoritmo más importante introducido en este campo, el eXtended Classifier System o XCS de Wilson.

Básicamente, el algoritmo busca mediante evolución genética y aprendizaje un conjunto de reglas que modelen la solución a un problema donde existe recompensa. Las reglas se componen de una condición y una acción. La población de reglas representa para cualquier condición dada, cual será la mejor acción. Esto se consigue asociando al espacio de entrada una predicción de la mejor recompensa futura obtenida para cada acción posible.

Entonces, dado un estado que representa el entorno, se buscan las reglas cuya condición coincide, y de ellas se toma la acción que ofrece mejor recompensa futura.

La tarea no es fácil, los algoritmos formales de aprendizaje por refuerzo, necesitan a priori un conocimiento determinista de las posibles entradas y las transiciones resultantes de las acciones, dejando poco o nada para la búsqueda y aplicación de generalización.

Con XCS este problema se resuelve introduciendo algunos ajustes a la componente genética. La idea general es básicamente repartir los recursos (reglas) para que representen todo el espacio con la mayor precisión y generalización posible. Como no es algo que se pueda resumir en unas pocas líneas, aquí os dejo la presentación: