Angry Birds meet EAs at EVO* 2019

Last 24 of April we presented the work «Free Form Evolution for Angry Birds Level Generation» at EVOApplications 2019 (EvoGAMES) a conference part of EVO* 2019, held in Leipzig (Germany).

The abstract of the work is:

This paper presents an original approach for building structures that are stable under gravity for the physics-based puzzle game Angry Birds, with the ultimate objective of creating fun and aesthetically pleasing Angry Birds levels with the minimum number of constraints. This approach consists of a search-based procedural level generation method that uses evolutionary algorithms. In order to evaluate the stability of the levels, they are executed in an adaptation of an open source version of the game called Science Birds. In the same way, an open source evolutionary computation framework has been implemented to fit the requirements of the problem. The main challenge has been to design a fitness function that, first, avoids if possible the actual execution of the simulator, which is time consuming, and, then, to take into account the different ways in which a structure is not structurally sound and consider them in different ways to provide a smooth landscape that eventually achieves that soundness. Different representations and operators have been considered and studied. In order to test the method four experiments have been carried out, obtaining a variety of stable structures, which is the first path for the generation of levels that are aesthetically pleasing as well as playable.

@amorag did a short presentation and later ‘defended’ a poster during the reception act. The presentation is a description of the poster:

Actually the poster was selected as the second best of the conference by the attendants. :D

Those interested can found the paper at Springer web: https://link.springer.com/chapter/10.1007/978-3-030-16692-2_9

Enjoy it… and cite us! ;D

Evostar 2015 mandatory post

We can never skip the chance to assist the Evostar conference, and aside learn the latest trends in Evolutionary Computation and present our results, we also have a good time with our other colleagues.

This time the conference was held in Copenhagen (Denmark), and because Antonio and me were part of the organization we didn’t have much time to go sightseeing, but we went to Tivoli Gardens and ride the flying chairs (and screamed like babies).

On the scientific part, we presented two papers to EvoGames track, related with our research lines on content generation for videogames and AI optimization. The first paper, How the World Was MADE: Parametrization of Evolved Agent-Based Models for Backstory Generation, presents a study on parametrization of the values that define a virtual world to facilitate the emergence of archetypes, and be able to generate interesting backstories (for videogames, for example). See the poster here:

The poster

Also, as we are commited to open science and open software, you can download the MADE environment from its web. The abstract:

Generating fiction environments for a multi-agent system optimized by genetic algorithms (with some specific requirements related to the desirable plots), presents two main problems: first it is impossible to know in advance the optimal value for the particular designed fitness function, and at the same time, it creates a vast search space for the parameters that it needs. The purpose of this paper is to define a methodology to find the best parameter values for both, the evolutionary algorithm, and the own fictional world configuration. This design includes running, to completion, a world simulation represented as a chromosome, and assigning a fitness to it, thus composing a very complex fitness landscape.
In order to optimize the resources allocated to evolution and to have some guarantees that the final result will be close to the optimum, we systematically analyze a set of possible values of the most relevant parameters, obtaining a set of generic rules. These rules, when applied to the plot requisites, and thus, to the fitness function, will lead to a reduced range of parameter values that will help the storyteller to create optimal worlds with a reduced computation budget.

Evostar 2015 - Copenhagen(That’s me with the IKEA rat plushies I used to describe our system)

Our other paper, It’s Time to Stop: A Comparison of Termination Conditions in the Evolution of Game Bots, describes a methodology to compare different termination conditions in noisy environments such as the RTS games. The abstract:

Evolutionary Algorithms (EAs) are frequently used as a mechanism for the optimization of autonomous agents in games (bots), but knowing when to stop the evolution, when the bots are good enough, is not as easy as it would a priori seem. The first issue is that optimal bots are either unknown (and thus unusable as termination condition) or unreachable. In most EAs trying to find optimal bots fitness is evaluated through game playing. Many times it is found to be noisy, making its use as a termination condition also complicated. A fixed amount of evaluations or, in the case of games, a certain level of victories does not guarantee an optimal result. Thus the main objective of this paper is to test several termination conditions in order to find the one that yields optimal solutions within a restricted amount of time, and that allows researchers to compare different EAs as fairly as possible. To achieve this we will examine several ways of finishing an EA who is finding an optimal bot design process for a particular game, Planet Wars in this case, with the characteristics described above, determining the capabilities of every one of them and, eventually, selecting one for future designs.

Evostar 2015 - Copenhagen(Here’s Antonio presenting the paper)

You can see the rest of the Evostar photos in their flickr account.

[Paper] My life as a sim: evolving unique and engaging life stories using virtual worlds

Our latest publication My life as a sim: evolving unique and engaging life stories using virtual worlds, using our framework MADE (created by @rubenhek), has been published in the ALIFE 2014 conference. The abstract:

Stories are not only painfully weaved by crafty writers in the solitude of their studios; they also have to be produced massively for non-player characters in the video game industry or tailored to particular tastes in personalized stories. However, the creation of fictional stories is a very complex task that usually implies a creative process where the author has to combine characters, conflicts and backstories to create an engaging narrative. This work describes a general methodology to generate cohesive and coherent backstories where desired archetypes (universally accepted literary symbols) can emerge in complex stochastic systems. This methodology supports the modeling and parametrization of the agents, the environment where they will live and the desired literary setting. The use of a Genetic Algorithm (GA) is proposed to establish the parameter configuration that will lead to backstories that best fit the setting. Information extracted from a simulation can then be used to create the literary work. To demonstrate the adequacy of the methodology, we perform an implementation using a specific multi-agent system and evaluate the results, testing with three different literary settings.

Check out the presentation by @jjmerelo at http://jj.github.io/alife14-made/#/home. You can download the proceedings of the conference (CC license), or download the paper draft.

More information is available on the project page.