Starcraft GP nominated to the HUMIES award

This year we participated in the HUMIES awards with our paper “Towards Automatic StarCraft Strategy Generation Using Genetic Programming“, accepted at CIG2015, wrote in collaboration with Politecnico di Torino and INRA. Our paper was elected from 28 candidates to be part of the 8 finalists, so we can consider it a great achievement. Although we didn’t won, because the astounding quality of the other works, we are thrilled about our nomination :)

Here is the presentation. It even includes a reference to Starship Troopers!

Towards automatic StarCraft strategy generation using genetic programming

I forgot to mention that we published our paper “Towards automatic StarCraft strategy generation using genetic programming” in CIG 2015 conference, held in Taiwan. This was a work made in collaboration with Alberto Tonda (INRA) and Giovanni Squillero (Politecnico di Torino), starting a new research line using this game (and also, starting other nice collaborations that are still a secret!)

The abstract:

Among Real-Time Strategy games few titles have enjoyed the continued success of StarCraft. Many research lines aimed at developing Artificial Intelligences, or “bots”, capable of challenging human players, use StarCraft as a platform. Several characteristics make this game particularly appealing for researchers, such as: asymmetric balanced factions, considerable complexity of the technology trees, large number of units with unique features, and potential for optimization both at the strategical and tactical level. In literature, various works exploit evolutionary computation to optimize particular aspects of the game, from squad formation to map exploration; but so far, no evolutionary approach has been applied to the development of a complete strategy from scratch. In this paper, we present the preliminary results of StarCraftGP, a framework able to evolve a complete strategy for StarCraft, from the building plan, to the composition of squads, up to the set of rules that define the bot’s behavior during the game. The proposed approach generates strategies as C++ classes, that are then compiled and executed inside the OpprimoBot open-source framework. In a first set of runs, we demonstrate that StarCraftGP ultimately generates a competitive strategy for a Zerg bot, able to defeat several human-designed bots.

Do you want to know more? Download the paper draft or electronic version in IEEE web.

Aplicación de Programación Genética para la generación de bots del RTS Planet Wars en CoSECiVi 2014

Este trabajo se publicó dentro del Primer Congreso de la Sociedad Española para las Ciencias del Videojuego (CoSECIVI), que se celebró en conjunción con el Gamelab 2014 en Barcelona.

En él se presentó el artículo titulado “Designing Competitive Bots for a Real Time Strategy Game using Genetic Programming”, cuyo resumen (en inglés) es:

The design of the Artificial Intelligence (AI) engine for an autonomous agent (bot) in a game is always a difficult task mainly done by an expert human player, who has to transform his/her knowledge into a behavioural engine. This paper presents an approach for conducting this task by means of Genetic Programming (GP) application. This algorithm is applied to design decision trees to be used as bot’s AI in 1 vs 1 battles inside the RTS game Planet Wars. Using this method it is possible to create rule-based systems defining decisions and actions, in an automatic way, completely different from a human designer doing them from scratch. These rules will be optimised along the algorithm run, considering the bot’s performance during evaluation matches. As GP can generate and evolve behavioural rules not taken into account by an expert, the obtained bots could perform better than human-defined ones. Due to the difficulties when applying Computational Intelligence techniques in the videogames scope, such as noise factor in the evaluation functions, three different fitness approaches have been implemented and tested in this work. Two of them try to minimize this factor by considering additional dynamic information about the evaluation matches, rather than just the final result (the winner), as the other function does.
In order to prove them, the best obtained agents have been compared with a previous bot, created by an expert player (from scratch) and then
optimised by means of Genetic Algorithms. The experiments show that the three used fitness functions generate bots that outperform the optimized human-defined one, being the area-based fitness function the one that produces better results.

La presentación del artículo se puede ver aquí:

El artículo se puede encontrar en: http://gaia.fdi.ucm.es/sites/cosecivi14/es/papers/24.pdf

Esperamos que os guste.

Y que nos citéis. :D

Volunteer-based evolutionary algorithms al dente

Planning the cook of a time consuming optimization problem? Have you considered to let a crowd of volunteers to help you in this endeavor? In a volunteer-based system,  volunteers provide you with free ingredients (CPU cycles, memory, internet connection,..) to be seasoned with only a pinch of peer-to-peer or desktop-grid technology.

If you are looking for a delicious cook of a volunteer-based evolutionary algorithm, you can find our recipe in this paper published in Genetic Programming and Evolvable Machines (pre-print version available here)

Title: “Designing robust volunteer-based evolutionary algorithms

Abstract This paper tackles the design of scalable and fault-tolerant evolutionary algorithms computed on volunteer platforms. These platforms aggregate computational resources from contributors all around the world. Given that resources may join the system only for a limited period of time, the challenge of a volunteer-based evolutionary algorithm is to take advantage of a large amount of computational power that in turn is volatile. The paper analyzes first the speed of convergence of massively parallel evolutionary algorithms. Then, it provides some guidance about how to design efficient policies to overcome the algorithmic loss of quality when the system undergoes high rates of transient failures, i.e. computers fail only for a limited period of time and then become available again. In order to provide empirical evidence, experiments were conducted for two well-known problems which require large population sizes to be solved, the first based on a genetic algorithm and the second on genetic programming. Results show that, in general, evolutionary algorithms undergo a graceful degradation under the stress of losing computing nodes. Additionally, new available nodes can also contribute to improving the search process. Despite losing up to 90% of the initial computing resources, volunteer-based evolutionary algorithms can find the same solutions in a failure-prone as in a failure-free run.