How to improve the Systems Security using Data Mining

During this week, Geneura Team has welcomed Professor Ja’far Alqatawna from the University of Jordan. Ja’far Alqatawna is an Associate Professor at King Abdullah II School for Information Technology, University of Jordan. He received his B.Eng degree in Computer Engineering from Mu’tah University, Jordan, followed by MSc. in Information and Communication Systems Security from The Royal Institute of Technology (KTH), Sweden. In 2010 He has been awarded his Ph.D. Degree in Computer Information Systems with specialisation in Information Security and e-Business from Sheffield Hallam University, UK. He was part of researching projects for investigating XACML as a policy language for distributed networks at Security, Policy and Trust Lab (SPOT) of the Swedish Institute of Computer Science (SICS), Sweden. His current research interests are in the field of Cybersecurity in which he tries to look for multi-dimensional approaches that go beyond the technical dimension in order to develop trustworthy Cyberspace. Yesterday he presented a talk about the use of Data Mining for improving the security of the software systems which you can see in slide share, http://es.slideshare.net/MaribelGarcaArenas/data-mining-in-security-jafar-alqatawna. For this time, he presented and discussed several security areas in which data mining has the possibility of enhancing the existing security methods.

 

Advertisements

Curso Google App Engine

El próximo lunes 17 de Noviembre empieza la primera edición del curso >”INICIACIÓN A LOS SERVICIOS DE GOOGLE PARA APLICACIONES” que impartiremos muchos de los miembros de este grupo.

El temario está organizado para empezar desde 0 y poder llegar a crear una aplicación usando la tecnología de google conocida como Google App Engine. Tienes el temario y los docentes resumidos en este cartel.

El curso es semipresencial e incluye 62,5 horas en total y sólo 20 presenciales que serán el 17, 18, 19 y 20 de noviembre en la ETSIIT de la UGR. Los días 17, 18 y 20 tiene horario de tarde, mientras que el día 19 se impartirá por la mañana.

El precio del curso es de 100 euros y se convalidará automáticamente por un crédito ECTS para todos los alumnos de la ETSIIT de la Universidad de Granada.

Para más información podéis dirigiros a la Fundación Empresa Universidad de la Universidad de Granada a través o directamente en el teléfono +34 958 24 61 20.

Si tienes alguna duda o pregunta, no dudes en enviarnos tu pregunta:

Cloud-based evolutionary algorithms: An algorithmic study

This is a new paper of the Cloud Storare Services series. It has been accepted for publication in Natural Computing with DOI 10.1007/s11047-012-9358-1. Inside you can find a study of how an evolutionary algorithm implemented using two different and free cloud storage services as Dropbox and SugarSync evolves a population of individuals for solving traditional problems like MMDP and P-PEAKS. The selected resources for this case have been homogeneous and heterogeneous computers for the same problems and the same experiments. Results underline SugarSync as the best option for these problems in a local network with homogeneous computers because the quality of the solutions is better using SugarSync than Dropbox although the differences are not significatives.

You can find the work with all the information on Springer .

Using free cloud storage services for distributed evolutionary algorithms in GECCO 2011

Esta semana ha sido el GECCO en Dublin. Yo he asistido desde el jueves 14 hasta el sábado 16 y aunque no he podido ir a la totalidad del congreso si me ha dado tiempo a ver el ambiente general.
En este congreso he presentado el artículo titulado Using free cloud storage services for distributed evolutionary algorithms. Y la presentación la podéis encontrar en SlideShare.

En este artículo podéis encontrar cómo hemos usado Dropbox para crear un multicomputador que evoluciona un conjunto de islas que cooperan para resolver un Algoritmo Evolutivo Paralelo que actúa sobre dos problemas típicos de Computación Evolutiva (MMDP y 4-TRAP) y que, hasta el número de computadores donde lo hemos probado, es escalable puesto que los tiempos de evaluación de los individuos disminuyen a medida que añadimos nodos de computación al multi-computador.

Después de la presentación algunos de los asistentes realizaron algunas preguntas que os puedo aclarar por si os surge la duda. La primera era si todo el tráfico que se genera en la red que comparten los nodos del multi-computador llega al servidor de Dropbox para después distribuirse. Y la respuesta a esta pregunta es claramente “no”. Está claro que a la vista de los resultados de este artículo y el presentado en Nueva Orleans en CEC (Cloud-based Evolutionary Algorithms: An algorithmic study) Dropbox distribuye los datos primero a los ordenadores donde está sincronizado y después de eso al servidor de Dropbox.

Respecto a la segunda pregunta, estaba relacionada con el esquema de evolución de las islas y en el artículo podéis encontrar cómo está especificado con detalle. Una descripción general sería que cada isla evoluciona una población de individuos con un esquema generacional y un algoritmo evolutivo clásico con un operador de cruce uniforme y un mutador tipo flip-flop para codificación binaria.