Workshop on Spatially Structured Metaheuristics

We cordially invite you to attend the following two-presentations on Spatially Structured Metaheuristics. This mini-workshop will be held at 11.30 a.m. in the CITIC-UGR building (June 26th, 2014).

Spatially Structured Metaheuristics: Principles and Practical Applications
by Juan Luis Jiménez Laredo (University of Luxembourg)

A relevant number of metaheuristics are based on population. Although conventions may establish different names, individuals in evolutionary algorithms, ants in ant colony optimization or particles in particle swarm optimization belong to the same side of a coin: they are all  atomic elements of the population (a.k.a. building-blocks). In this context, spatially structured metaheuristics investigate how to improve the performance of metaheuristics by confining these elements in neighborhoods. This talk aims at presenting the working principles of spatially structured metaheuristics and practical applications to enhance diversity, scalability and robustness.

 

Spatially Structured Metaheuristics: Dynamic and Self-organized Topologies
by Carlos M. Fernandes (University of Lisbon)

Population based metaheuristics are computational search or optimization methods that use a population of possible solutions to a problem. These solutions are able communicate, interact and/or evolve. Two types of strategies for structuring population are possible. In panmictic populations, every individual is allowed to interact with every other individual. In non-panmictic metaheuristics, also called spatially structured population-based metaheuristics, the interaction is restricted to a pre-defined or evolving structure (network). Traditional spatially structured metaheuristics are built on pre-defined static networks of acquaintances over which individuals can interact. However, alternative strategies that overcome some of the difficulties and limitations of static networks (extra design and tuning effort, ad hoc decision policies, rigid connectivity, and lack of feedback from the problem structure and search process) are possible. This talk discusses dynamic topologies for spatially structured metaheuristics and describes a new model for structuring populations into partially connected and self-organized networks. Recent applications of the model on Evolutionary Algorithms and Particle Swarm Optimization are given and discussed.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s