Tree depth influence in Genetic Programming for generation of competitive agents for RTS games

by Pablo García-Sánchez, Antonio Fernández-Ares, Antonio Miguel Mora, Pedro Ángel Castillo, Juan Julián Merelo, Jesús González
in EvoAPPS posters

This work presents the results obtained from comparing different tree depths in a Genetic Programming Algorithm to create agents that play the Planet Wars game. Three different maximum levels of the tree have been used (3, 7 and Unlimited) and two bots available in the literature, based on human expertise, and optimized by a Genetic Algorithm have been used for training and comparison. Results show that in average, the bots obtained using our method equal or outperform the previous ones, being the maximum depth of the tree a relevant parameter for the algorithm.

More info is available at the OSGiLiath Evolutionary Framework webpage.

One thought on “Tree depth influence in Genetic Programming for generation of competitive agents for RTS games

  1. Pingback: This was a triumph: Evolving intelligent bots for videogames. And for Science. | GeNeura Team

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s