[GECCO’09] Improving Genetic Algorithms Performance via Deterministic Population Shrinkage

This year the Genetic and Evolutionary Computation Conference (GECCO) took place in Montréal (Québec-Canada) where we were presenting our last work in collaboration with the Laboratoire de Vision et Systèmes Numériques de l’Université Laval in Quebec City:

Despite the intuition that the same population size is not needed throughout the run of an Evolutionary Algorithm (EA), most EAs use a fixed population size.
This paper presents an empirical study on the possible benefits of a Simple Variable Population Sizing (SVPS) scheme on the performance of Genetic Algorithms (GAs). It consists in decreasing the population for a GA run following a predetermined schedule, configured by a speed and a severity parameter. The method uses as initial population size an estimation of the minimum size needed to supply enough building blocks, using a fixed-size selectorecombinative GA converging within some confidence interval toward good solutions for a particular problem. Following this methodology, a scalability analysis is conducted on deceptive, quasi-deceptive, and non-deceptive trap functions in order to assess whether SVPS-GA improves performances compared to a fixed-size GA under different problem instances and difficulty levels. Results show several combinations of speed-severity where SVPS-GA preserves the solution quality while improving performances, by reducing the number of evaluations needed for success.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s