How to find Wynona Ryder’s images in a content-based image system

Last Friday I presented the paper “PicSOM – content-based image retrieval with self-organizing maps ” of Laaksonen et al. This authors uses T-SOMS (Tree-based SOMs) to classify images based in their content: using distinct measure types, like colour, sFFT (shape Fast Fourier Transform) and others several SOM maps are created (one per measure). The solution to how to give weight to that measures is simple: the user feedback. A set of images is presented to the user in a web-based application, so he can select the interested ones (example: Wynona Ryder’s face) to obtain the next set of images (an example can be seen in Figure 1). The algorithm learns with the selected images and gives weight to select the images of an specific map (in our example, shape measures are more important than colour measure).

winona

Figure 1: Winona Ryder’s face in PicSom interface

To test the performance of every map and the global performance of the whole system the authors use sumatory things to stablish if the selected images belongs to a determined class (i.e. Planes, dinosaurs of faces). The conclusion is that it is necessary to use the whole set of measures at the same time to acquire the best performance. But the most interesting part is that you can read the paper and test the algorithm by yourself, a not so common practice.

Un pensamiento en “How to find Wynona Ryder’s images in a content-based image system

Responder a jjmerelo Cancelar respuesta

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s